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1. Introduction.

As one of the authors has pointed out in {30}, for the purposes of military
operations research, it is convenient to consider that there are three essential parts
of any time-sequential combat optimization problem:

(a) the decision criteria (for both combatants),

(b) the model of conflict termination (and/or unit breakpoints),

{c) the model of combat dynamics.
An important problem of military operations research is the determination of the rela-
tionship between the nature of system objectives and the structure of optimal (time-
sequential) combat strategies. Of particular importance is the censitivity of the
structure of optimal combat strategies to the nature of military objectives.f In a
time-sequencial combat optimization problem the combatant objectives are quantified
through the criterion functional (see [4]). 1If the optimal combat strategy and asso=
ciated payoff are quite sernsitive to the functional form of the criterion functional,
then care must be exercised in the selection of the functional form.

An igportant constituent pait of fire support is the target allocation function
which matches a specific weapon type with an acquired target within the target's
environmen:.++ It is not surprising then that the determination of optimal target
allocation strategies for supporting weapon systems+++ is (in one form or another) one
of the most extensively studied problems in both the open literature (see [33] (or [34])
for further references) and also classified sources. During World War II the pcoblem
of the appropriate mixture of tactical and strategic air forces (another aspect of the
optimal fire-support strategy problem) was extensively debated by experts. Some

analysis details are to be found in the classic book by Morse and Ximball {see pp. 73-77

rSee [23) for a discussion of the influences of political objectives on military
objectives for the evaluation of (time-sequential) combat strategies.

++See pp. I-33 to I-43 of [19] for a discussion of the key clements of the fire-support
system for purposes of systems anzlysis.

+*+See (38} for a brief discussion of the dlstinction between a "primary" weapon system
(or infantry) and a "supporting" weapon system,
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of [21]). This problem was further studied at RAND in the late 1940's and early 1950's

(see [7)) and elsewhere (see [1]). It would probably not be too far-fetched to say that
this problem stimulated early research on both dynamic programming (see [2]) and also
differential games ‘(see {7], {12]). Today the problem of the determination of optimal
air-war strategies (another aspect of the fire-support problem) is being rather exten-
sively studied by a number of organizations (see, for example, (8], [16], [36]).

Thus, the objective of this investigation is to determine the sensitivity of the
optimal time-sequential fire-support policy to the functional form of the criterion
functional. Our research approach is to combine Lanchester-type models of warfare (see,
for example, [28])-[30]) and references contained therein) with generalized control theory+
(i.e. optimization theory for dynamic systems). This general research program has been
described in more detail elsewhere [31], [32]. It seems appropriate to examine sensi-
tivity of the optimal policy by considering a concrete problem. Consequently, our
research approach is to consider several different criterion functionals for the same
tactical situation involving a time-sequential allocation of supporting fires. The
tactical situation that we have chosen to examine is the "approach to contact" during
an assault on enemy defensive positions by friendly ground forces. We seek to determine
the "best" allocation for the supporting fires of the friendly forces. We will consider
a mathematically tractable version++ of this problem so that we can make quantitative
comparisons among the optimal policies corresponding to the various criterion functionals.
Corresponding to each difier.nt criterion functional is a different optimization (here
optimal control) problem. Ez:cl of these problems has been solved, and the corresponding
optimal fire-~support policies will be contrasted.

In this paper four different criterion functionals are considered: it is shown

that both the difference and the ratio of military worths of friendly and enemy survivors

fThis term was apparently first coined by Y. C. Ho in [9] (see also [10]).

HNeiss [38} has emphasized that a simplified model of a combat situation is par.icularly
valuable when it leads to a clearer understanding of significant relationshivs which
would tend to be obscured in a more complex model.
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(computed according to linear utilities) and also the ratio of the military worths

of friendly and enemy losses as criterion functionals may lead to exactly the same
optimal policy. A completely different optimal policy, however, is obtained for the
welghted average of force ratios of opposing infantry (at the time that the supporting

fires are lifted) as the criterion functional. We have decided that the three former

criterion functionals (i.e. the difference and the ratio of the military worths of

- survivors and the ratic of the military worths of losses) are appropriate for an "attri-

tion" objective,+ whereas the weighted average of force ratios is appropriate for a

"breakthrough" objective.f*

[In the latter case, the attacking force tries to overpower
the defenders at one place along a front and then pour reinforcements through the break
in the defender's defenses in order to "penetrate” behind the enemy lines and, for
example, disrupt enemy command, control, and communications.]

The body of this paper is organized in the following fashion. First, we review
previous work on the relationship between the quantification of military objectives
and the structure of optimal time-sequential fire-distribution poiicies in order to
place the work at hand in proper perspective. Then we describe the fire-support problem
and discuss the four criterion functionals that will be used to determine optimal fire-

support policies. Each of these criterion functionals represents a different quantifica-

tion of military objectives, and all appear to be reasonable criteria. Next, the

optimal time-sequential fire-support policies are described for the four problems. The
structures of the four optimal policies are then contrasted. Next, we justify the
optimization results that we have been discussing by sketching their development via
modern optimal control theory. This development is given for each of the four problems.
Finally, we discuss what ve have learned from our investigation of the dependence of
the structure of optinal time-sequential fire-support policies on the quantificatica

of military objectives.

+In other words, the friendly forces seek an "overall" military advantage.

**In other words, the friendly forces seek a "local" military advantage.




2, Previous Work on the Structure of Optimal Fire-Distribution Policies.

The only systematic examinations of thc influences of the nature of the criterion
function on the structure+ of optimal tine-scquential fire-distribution strategies
kno'm to the authors are those of Taylor [24)-(27), [31], (34]), [35). In [24]-{27]
and [31" a linear ul:ility-H was assumed for the military worth of the number of each
surviving weapon system type, and the criterion functional (payoff) was taken Lo be
the net military worth of survivors (i.e. the difference between the military worths
2f friendly and cnewny forces). Taylor (see [24]-[27] and [31]) has studied how the
optimal time-sequential fire-distribution policy depends on the assignment of Lhese
linear utilities. In other words, he examined the sensitivity of the optimal time-
sequential combat policy to parametric varzations in the assigned linear utilities
for survivors. It has been shown that the n-versus one fire-distribution problems
studied in [24]-{27] all have quite simple solutions when enemy survivors are valued
in direct proportion to their kill capabilities (as measured by their Lanchester attri-
tion-rate coefficicnts (see [28]-(29]) against the (homogeneous) friendly forces).

Pugh and Mayberry [23] have suggestvd+r+ that an appropraate payoff, or objective

function (in our terminology, criterion functional), for the quantitative evaluation

of combat strategies 1s the loss ratio (calculated possibly using veighting factors for
heterogencous forces). They have stated [23] that an "almost equivalent" criterion

is the loss difference. In this paper we will examine to what extent these criteria

+In [25) and [31] the influences of the nature of the target-type attrition procoss on
the structure of optimal time-sequential fire-Jistribution policies are examincd.

f*See [11] for methodology for the development of these linear utilities. For optumal
control/differential game combat optimization problems, the aseumption of linear urilaitzes
yields that the boundary conditions for the adjoint variables {at least when no terrinal
state constraint 1s active) are independent of the values of the statc variables. Serious
computational difficulties may arise when nonlincar utilities are assumed. The effects

of assuming nonlincar utilities for military rescurces upon the cvaluation of time-
sequential combat strategies has apparently never been studied.

i - P
However, Pugh ond Mayberry [2.] do not caplore the consequences of various functioaal
forms for the craterion functioral,
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are in fact equivalent. In combat problems with either no replacements or a fixed-length
planning horizon, it is readily seen that minimizing the loss difference is the same

as maximizing the difference in survivors. It is such a case of no replacements that

we will examine here. Tt remains to determine the "equivalence" of minimizing the loss
ratio to maximizing the ratio of survivors and to relate these results to those for
wmaximizing the difference in survivors.

Furthermore, for the evaluation of combat strategies it is of interest to consider
the military worth (i.e. utility of mil,tary resources) of survivors. In almost a11+
the work that has appeared in the open literaturp++ a linear utility has been assumed
for valuation of survivors, and some form of net military worth (i.e. the difference
between the military worths of friendly and enemy survivors) has Leen taken as the pay-
off (i.e. criterion functional) (see, for example, [20], ([24]-[27], (31])-[32], [35)).
One reason for assuming such linear utilities is that of mathematical tractability:
the boundary conditions for the dual variables do not depend on the state variable
values (at least when no terminal constraint involving the state variables is active).

The only study known to the authors of the consequences on nonlinear utilities
for survivors is contained in [34], where Kawara's supporting weapon system game [14]
is examined. Taylor [34] has determined (at least for the case in which the appropriate
side's (in Kawara's case, the defender) supporting weapon system is not annihilated)
the most general form of the criterion functional which leads to optimal fire-support
strategies being independent of force levels, and he has shown that the criterion
functional chosen by Kawara [14] is a special case of this form. In other words, Taylor

has shown that Kawara's conclusion [14] that optimal fire-support strategies do not

*The only exceptions known to the authors are the papers by Chattopadhyay [5] and
Kawara [14). For example, in Kawara's paper [14] the payoff is the ratio of opposing
infantry strengths (measured in terms of total numbers) at the "end of battle" (see
also the differential game studied in Appendix D of ([34]).

+fA comprehensive review of pertinent literature published prior to 1973 in the field
of optimizing time-sequential tactical decisions (using Lanchester-type medels of
warfare) is to be found in {32].




depend on force lovels only applies to problems with the special type of criterion
functional used by Kawara and is not true in gencral. No other examination of the

dependence of optimal combat strategies on combatant objectives is known to the authors.

3. Comparison of Optimal Fire-Support Policies.

In this section we give the fire-support allocation problem for which the
optimal policy is developed according to four different criterion functionals. These

time-sequential fire-support policies are then compared.

3.1, The Firc-Support Problem.

Let us consider the attack o! heterogeneous X forces against the static defense
of heterogencous Y forces along a "front." Each side is composed of primary units
(or infantry) and fire-support units (or artillery). The X infantry (denoted as Xl
and Xz) launches an attack against the positions held by the Y infantry (denoted as

Y1 and YZ)‘ We ray ccnsider X1 and X2 to be infantry units operating on spatially

separated picces of terrain. We assume that the X1 infantry unit attacks the Yl

infantry wnit aana :imilarly for X2 and Y2 with no "crossfire" (c.g. the X

is not attrited by tbe ¥, infantry). We will consider only the "approach to contact"

1 infantiy

phase of the battle. This is the time from the initiation of the advance of the X1

and X and Y, defensive positions until the X; and X

forces towards the Y 2 \ 9

2 1

forces actually make contacl with the enemy infantry in "hand-to-hand" combat. It is
assumed that this time is fixed and known to X.

The Xi forces begin their advance against the Y,L forces from a4 distance and
move towards the Y, position. The objective of the X, forces during the "approach
to contact" is to close with the enemy position as rapidly as possible. Accovdingly,
small arws fire by tre X1 forces is held at a minimum rr firing 1s done "on the move"
to facilitate r.pid wmowvement. Tt is not unrcasonabley therefore, to assuwe that the

+
effectiveness of X force "on the move" 15 neglipible against Yi' We assume, however,
1

T . - .
It may be shown that such (n appresimation {s necessary for reasons of mathematical
tractability in the faire-support oprimal control problem to be subsequently giver.

6
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that the defensive Y, fire (for {1 = 1,2) causes attrition to the advancing X

i 1
forces in their "field of fire" at a rate proportional to only the number of Yy firers.

Let a, denote the constant of proportionality. It is convenient to refer to the

i

attrition of a target type as being a "square-law" process when the casualty rate is

proportional tc the number of enemy firers only and as being a "linear-law" process ’
when it is proportional to the product of the numbers of enemy firers and remainirg
targets (see [25]-[27]). Brackney [3] has shown that a "square-law" attrition process v
occurs+ vwhen the time to acquire targets is negligible in comparison with the time to

destroy them. He has pointed out that such a situation is to be expected to occur when

one force assaults another. Additionally, we assume that either the Y forces have

no fire-support units or their fire support is "organic” to the Y units (i.e. fire~

and only those with Y

support units are integrated with Y support Yi.

i i
During the "approach to contact" the X fire-support units (denoted as W)

deliver "area fire" against the Y forces.++ Let 4 denote the fraction of the W

i

fire-support units which fire at Y [We then have that ¢14-¢2 =1 and ¢i =0

L
for 1 =1,2.] Then for constant ¢i there are a constant number of fire-suppric

units firing at ¥ since we assume that the W fire-support units are not in the

i’
combat zone and do not suffer attrition. In this case, the Yi attrition rate is
proportional to the Yi force level (see [37]; also {13]). Let ¢y denote the corre-
sponding constant of proportionality. This combat situation is shown diagrammatically
in Figure 1.

It is the objective of the X forces to utilize their fire-support units

(denoted as W) over time in such a manner so as to achieve the "most favorable" situva-

tion at the end of the "approach to contact™ at which time the force separations between

fTo be precise, one can only conjecture that such an attrition process probably occurs

under the stated conditions.

*+In other words, we assume that X's fire-support units fire into the (constant) area
containing the enemy's infantry without feedback as to the destructiveness of this
fire.




1 Infantry

COMBAT

a 5
zoNg ! A 1

X Infantry

Fire Support
W

Figure 1. Diagram of Fire-Support Problem Considered for
Examination of Effect of Criterion Functional

on Optimal Fire-Support Policy.




opposing infantries are zero and artillery fires must be lifted from the enemy's
positions in order not to also kill friendly forces. The "outcome” of this phase of
battle may be measured in several different ways and is quantitatively expressed
through the criterion functional (denoted as J). Thus, we have the following optimal
control preolem for the determination of the optimal time-sequential fire-support
allocation policy (denoted as ¢*(t) for 0=Xt < T, where T denotes the time of

the end ¢f the "approach to contact") for the W fire-support units.

maximize J,
¢ty
with stopping rule: tf-T =0,
dx‘.L
subject to: a6 - A (1)
(battle dynamics)
dy

i _ =
Tl —¢1ciyi for 1i=1,2,
with initial conditions:

xi(t-O) Xy and yi(t 0) 5 for 1 =1,2,
and

Xy 9%05¥) Y, 2 0 (State Variable Inequality Constraints),
¢l*‘¢2 =1 and ¢i 20 for i=1,2 (Control Variable Inequality Constraints),

where
J denotes the criterion functional,

xi(t) denotes the number of x1 infantry at time ¢t, similarly for yi(t),

a is a constant (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of Yi fire against Xi),

N is a constant (Lanchester) attr.tion-rate coefficient (reflecting the
effectiveness of W supporting fires against Yi)’

tf (with numerical value T) denotes the end of the optimal control problem,
and

¢i denotes the fraction of W fire support directed at Yi'




It will be convenient to consider the single control variable ¢ defined by
¢ = ¢1 so that ¢2 = (1-¢4) and 0=¢ s 1. (2)

For T < 4= it foilows that yi(c) >0 for 0=t = T. Thus, the only state
variable inequality constraints (SVIC's) that must be considered are xg 2 0. However,

let us further assume that the attacker's infantry force levels are never reduced to

zero. This assumption may be militarily justified on the grounds that X would not

attack the Yi positions if his attacking Xi forces could not survive the "approach

to contact."

3.2, The C.riterion Funationals Considered.

The four criterion functionals for which the optimal time-sequential fire-support
allocation policies will be compared are given in Table I. All are functions only of
the various numbers of combatants al the end of the planning horizon (i.e. at the end
of the "approach to contact" at which time the supporting fires must be lifted fox
safety reasons).

The criterion functional for Problem 1 (i.e. J1 = Xi=l akxk(T)/y)(T)\ represents
a weighted average of the force ratios of opposing numbers of infantry in the uwo
infantry combat zones. The rationale behind this choice is that in each combat area
(i.e. the area of combat between Xi and Yi) cuwbat (possibly hand-to-hand) between
the Xi and Yi forces will follow the "approach to contact" and the (anitial) force
ratio will be related to the outcome of this subsequent combat action. The weighting
factors (i.e. ¢ for k = 1,2) allow one to assign relative weights to this subse-
quent combat between Xi and Yi in the two combat areas.

The criterion functional for Problem 2 (i.e. J2 = zirl vkxk(T)— Xi=l wkyk(r))
represents the difference between the milatary worths (computed using linear utilities)
of the surviving X and Y tfcrces at the end of the "approach to contact.”" As noted

above in Section 2, we observe that wmanimizing the differcnce in worth of survivors as

the same as mimimizing ibe loss diffirence in combat problems (such as the one at hand)

10
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Problem Criterion Functional, J
§
1 a x (1)/y, (T)
N 3 S
2 2
2 kgl u® = 1wy m
2 2
!
3 {kzl v WP 1w o)
2 o 2 o
4 -{kzl Oom A 1w G )
TABLE 1.

Surmary of Problems Considered to Study
Effect of Criterion Functional on Optimal
Fire-Support Policy.
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with no rcplacements.* The criterion functional for Problem 3 (i.e. J3 =
2 . 2 . c

{zk=1 vkxk(f)}/{zk=1 wkyk(T)}) represents the ratio of total military worths of Lhe
surviving X and Y forces, whereas tihe one for Problem 4 (i.e. J& =

2 (] 2 o . fas
-{Zk=1 Vk(xk-xk(T))}/{zk=l wk(yk-yk(T))}) represents the rutio of military werths of
losses. Both the loss ratio and the loss difference have been proposed by Pugh and
Mayberry [23] as apprupriate payoffs for the evaluation of combat s.rategies. They
state that (see p. 869 of [23]) "when the most straightforward estimote of a weighting
factor for the loss difference is used, the two criteria arc almost equivalent." From
the study at hand, we will see that a similar statcrent is true: the two criteria are

equivalent for a certain "natural" valuation of forces (sce next section), but other-

wise they may yield slightly different optimal time-sequential fire-support policies.

3.3. Optimal Fire-Support Policies.

In this section we give the optimal time sequential fire-support policies for the

four problemg‘rstated in the previous section. In all cases we assume that neither of

the attacking infantry forces can be reduced to a zero force level during the approach

"
to cont:act.""H Under this condition the solutions+'++ to the first three problems are

given in Table II with ancillary information on switching times being given in Table
III. The solution tc Problem 4 is exactly like that to Problem 3 except that J3 in

Problem 3 is replaced by (_JA)'

+This result also holds for problems with a fixed-length planning horizon in which
rates of replacement are solely dependent on time (and not subject to control).

++As shown in Tables I and II, each of these problems corresponds to a different
criterion functional for the attackers.

Tfflnitial force levels and the known length of the appioach to contact may be suffi-
cient to guarantee this for a given set (or range of values) of Lanchester attriation-
rate coefficients.

++T1For a discussion of the distinction between open-loop and clesed-loop time-sequen=
tial policies, see [31) or [35]. TFor detewministic models such as the ones under
considerationy the two types ot policies are well hnown to be equivalent.
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Table II. Optimal Fire-Support Policies for the Three Problems.f

2
PROBLEM 1: - kgl ax (Dly, (T

For 0£¢t <T, optimal (open-loop) time-seq ial fire-support pollicy is
o o
1 for Fy(r;,T) 2 F,(r,,D),

$(t317,1,,7) =

o )
0 for l-‘l(rl,T) = Fo(ryT),

vhere
r, = x./y
1" %Yy o o1
and ° T\ fe + o1 1 ci'l‘
l-‘i(ri,l‘) = aiaici{[;][ o) ] - ‘c-i(e -l-ciT]}.
i i
PROBLEM 2: J, = v, T - w v, (T)
27 b o Kk
and
i i
PROBLEM 3: J, = [ v ('r)]/[ W,y (r)]
37 4 K o Kk

Nonrestrictive Assumption: wl/(alvl) 2 w2/(a2v2)

Optimal (closed-loop) time-sequential fire-support policy is

PHASE] for 0stc <t =1T- H(Yﬁ/)’é)_
1 for yl/y2 > a2c2v2/(alclv1),
P(nx) = S eyllegbe,)  for yly, = azczvz/(alclvl),
0 for yl/y2 < a2c2v2/(a1clvl),(
PHASE 11 for T - rl(ygly,f.) 2t=sT
dx(t, 0 = 1,

where
£ f
Tq for o 205.
£ f
rl TO for oLSD <°s’
0 for pf<pL,
a,c,V w w
27272 2 1
A i [ AR R ]
172 L ayeyvyllagvy)ilagy,
vores:

(1') g is the unique nonnegative root of F(T“(s) = 0.

(2) For Py < pf < oé, T, is the smaller of the two positive roots of

C(‘('to;pf) = 0.

é

*IL is assumed that problem parameters and initial force levels are such that
x‘('r) >0 for 1 = 1,2,

HSce Table 111 for the definitions of F(z) and G(T;of). These functions are

different for Problems 2 and 3.

13
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Table 1II. Determination of the Switching Times g 3nd \“ for Problems 2 and 3.

Nonrestrictive Assumption: w, /(a NUER /(a v,)

‘S 18 the unique nomnegative root of F(‘K'T ) =0. I-‘cr °L < pf < oé. 1’

i the smaller of the two positive roots of G(‘!"’,D ) = 0.

It has been shown tha
(2) bounds on T, are givenby 0=t
b) t
(b) f

(c) there is no root to G(t=t

¢ 5T £t
is a strictly increasing function of o for o Sp <o,

L S

ofy w £ f
0,o) 0 for p > pg-

2 2
For PROBLEM 2: J, = ) wx (D - 1 wy (D
2 k=1 k'k k-lkk

F(r) w1 "l-- i ]e-clf - [—l- - bt ]
S T A Y2

c(r,D )= —-(c 1)[ 1 l]of -1 +{alclvl]{ i ]of - [Hz ]

MY 2¥2

Bounds on I are given by:
(a) For "ll(alvl) s llcl.
v,

W, W, W
A (R all o1 2
™1 %% 1

(b) For 1/(::l = wll(alvl),

-[—3]/[ 1]}‘%‘ i
¥yl 133Vy Y1 3V

2 2
For PROBLEM 3: J, = [kzl vkxk(r)]/{kz wk)'k(T)]

¥ e-clt ) [—1— J3u2]
M1 €1 %2

[ a,c,v a,C,V Yy Yoy w
G(T;pf) * ;:L(e ! -1)[alc1v1]‘)f ST J3{[alclvl] [.7:.\11_]"f - [a \21 ]}
1 27272 27272

F(r)-r+[—~

Bounds on I are given by:
{a) For J N /(a v ) < l/cl.

w w W w
JB[a\lI - a\2: =% SCL{I '[?é']/[a 3’ ]}
11 272 1 272 11

(b) For 1/4:1 < J3 wl/(alvl),

Also ER




Let us sketch here the procfs of a few statements made in Tables II and III.
The existence of a unique nonnegative root to F(t=1s) =0 tor wll(alvl) = wzl(azvz)
follows from F(71=0) < 0 and F'(t) > 0 ¥Vt 2 0. The existence of two positive roots
te G(1=t¢;of) = 0 [here the second argument, of, is a (fixed) parameter] for

f

wll(alvl) 2 w2/(azv2) and p; <p < pé follows from G(1=0) > 0 for pf >0y and

the fact that (letting T denote the unique value of T at which the global minimum
of the strictly convex function G(T) occurs) G(T=?;of) =F(R) < 0 for pf < og.
The latter is a consequence of ac/apf >0 and G(T=Ts;of=p§) = F(T=Ts) = 0. It
should be noted that the fact that G'(ri?;of) = 0 allows the parameter pf to be
eliminated from G(r;;;pf). It also follows that there is no solution (i.e. value ol

1¢) to G(T=T¢;Df) =0 for pf

f
> Pge The proof that BTS/3J3 = —(aF/3J3)/(3Flars) >0
follows from 3F/BTS >0 and 3F/3J3 < 0 (the latter holding since

kmbwf)—l+cr}>uy

1
We will now illustrate the structure of the optimal time-sequential fire-support
policies for the first three pioblems by considering some numerical examples. The
basic parameter set used in the numerical computations is shown in Table IV. Numerical
results have not been obtained for Problem 4 when wll(alvl) > w2/(a2v2) because of
the difficulty in solving the associated two-point boundary-value problem. The struc-
ture of the optimal policy, however, is similar to that for Problems 2 and 3; although
switching times are, in general, very difficult to determine.
For Problem 1 it is convenient to introduce the "local" force ratio+ €, = xi/yi,
which represents the ratio of the numbers of opposing infancry in each of the two
combat areas (see Figure 1). The optimal time sequential fire-support policy is most
conveniently expressed as an open-loop control in terms of the two initial force ratios,
denoted as ro

i
to contact T. This optimal fire-support policy is graphically depicted in Figure 2.

= ri(tEO) for i = 1,2, and the given length of time for the approach

In the initial force-ratio space, the line with equation

J(See {30] for some insights into the dynamics of combat from considering the force-
ratio equation. N




TABLE IV.

Basic Parameter Set for Numerical Examples.

‘ 3 1
1 0.020 0.06 T = 30 minutes
2 0.015 0.05

1. a, has units of [Xi casualties/{(mnute) X (number of Yi))].

2, ¢, has units of [Yi casualties/{(minute) x (number of Yi)}]'
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k Figure 2. Optimal (Open-Loop) Fire-Support
] Policy for Problem 1.

£
2
o aZ o
5.0 For r, = Ry 5—1- Ty T hay:
¢*x(t) = 0 for 0S¢t <=7
4,0
3.0 O ok i& °_
J 2 TR Ty
1
2.0
0 2 0 R
1.9 For r, = Ry 5 Ty -ha,:
6*(t) =1 for 08¢t ST ¥
0 '
" T T T T T ! 0} :
1 1.0 2.0 3.0 4.0 5.0 6.0 r :
/ 1 ‘
/ !
NOTES ;
.
(1) R= alalcl/(azazcz). P
{
c )T _ .
@ v [ ?
1127 -1 '
[ c,T c,T i3
%2 YR v o3 T2 ] !
3) us= [ o7 ] {;2-(0 1 cl’l) -c—z(e 1 CZT)I' 11
e -1 1 2

(4) r, = xi/yl.
(5) o) =y T 1.0. See Table IV for other parameter values.
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a

o 2 o
r, = Ry 5 ry - ha,, (3)
where
R= alalcll(azazcz),
c,T
Y= (Eg e ! -1
lcl c.T |°
‘-1
and €

=
[}

c c, T c,T
2 R 1 1 2
o e e [P e},
2 1 2
e © -1
is a "dispersal line" (see [12], [24], or [31]) away from which all optimal battle

trajectories flow. This is shown in Figure 3. In constructing this figure, we have

used facts like the following: when ¢ =1 for 0t <T and rf

9 = 0, then

-c,r,/a
12 2+a1). %

. =-1— f..
r ) ((clr1 al)e

For Problems 2, 3, and 4, the optimal fire~support policy (expressed as a closed-
loop control (see [17] or [35])) is most conveniently expressed in terms of yl/y2
(i.e. the ratio of the numerical strengths of the two defending infantry forces) and
T=T-t (i.e. the "backwards" time or "time to go'" in the approach to contact).
When enemy forces ara valued in direct proportion to the rate at which they destroy

value of the friendly forces, i.e.
v, = kaivi for i=1,2, (5)

the optimal fire-support policy takes a particularly simple form (denoted as POLICY A):

POLICY A: For 0=t =T

1 ‘ for yl/y2 > azczvz/(alclvl),
¥ (L %,y) = c2/(c1+c2) for yl/y2 = a2c2v2/(alclvl), (6)
0 for ylly2 < azczvzl(alclv1 .
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This 1s shown pictorially in Figure 4 in which optimal trajectories are traced backwards
in time. It is convenient to note that, for example, when ¢(t) = CONSTANT for
0<t=o0, we have

p(1) = of exp{[¢c;~(1-¢)c,]t}.

In this case, T = 0 (see Table II), i.e. the entire appreoach to contact is "PHASE 1."

When enemy forces are not valued in direct proportion to the rate ot which they
destroy value of the friendly forces (without loss of generality we may assume that
wll(alvl) >w2/(a2v2)), the solutions to Problems 2 and 3 are considerably more complex
as shown in Figure 5. As we see from Table II, the planning horizon may be considered
to consist of two phases (denoted as PHASE I and as PHASE II), ¢.ring each of which a
different fire-support allocation rule is optimel. We derote this overall optimal
policy as POLICY B (see Table II). During PHASE I, POLICY A is optimal; whereas during
PHASE II, it is optimal to always concentrate all artillery fire on Yl (which has
been valued disproportionately high).

The absence or presence of PHASE II itself in the optimal time-sequential fire-
support policy depends on the ratio of enemy infantry strengths p = yl/yz. For Problem
2 the length of PHASE IT (i.e. rl) is independent of the final force levels of the
attacking friendly finfantry units (i.e. xi and xg) and depends only on pf = yi/yg
and the combat effectiveness parameters (see equations (1)), whereas for Problem 3 the
length of PHASE II does depend directly on xi and xg through the criterion functional
J3 = {Xi=l kai}/§2i=l wkyi}. Thus, we see that T, may be quite different for Problems

2 and 3: for example, for the parameter set shown in Table IV (plus force utility

f
1

and yg = 50.0), we have TS(Problcm 2) = 7.93 minutes, while TS(Ptoblem 3) = 11.37

values v, =

1=V = 15.0, vy = 4.0, and vy = 1.5 and terminai values x, = xg = 200.0

minutes. [For computing TS(Problem 3) by using F(t) shown in Table II1, we have

f £(22%2%2 £ .
used the fact that (yl)S = YZ[Z-c 3 ] exp(—clrs) to eliminate 2 from J3.] Recalling
1711

that 813/3J3 > 0 (see Table II1 above) and observing that
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NOTE: See Table IV for parameter values.

Figure 4. Diagram of Optimal (Closed-Loop) Fire-Support Policy
(POLICY A) for Problems 2, 3, and 4 when v/ (apvy) =
w2/ (azvz).
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Backwards Time, T (minutes) (t=T)

NOTES: (1) p = y1/y2.

(2) See Table II for definitions of p, and of.

3 v

1

L S
=v, = 15.0, Wy = 4,0, and v, = 1.5. See Table IV for

other prarmeter values.

Figure 5.

diagram of Optimal (Closed-Loop) Fire-Support Policy
(POLICY B) for Problem 2 when wll(alvl) > w2/(azv2 .
[The structurc of the optimal fire-support policy is

similar for Probiems 3 and 4.)
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v,/ (a;v)]
1im ts(Ptoblem 3) = (llcl)ln {T;;7?;;;;$T} ’

J 3"+°

we see that for this parameter set the largest that ts(Problem 3) may be is

&)

1lim TS(Problem 3) = 11.55 minutes. Thus, for this parameter set tS(Problem 2)

J3'H'°

and TS(Problem 3) may differ by at most fifty percent.

3.4. Discussion of Comparison.

In this section we will contrast the structure of the optimal time-sequential
fire-support policies for the four problems considered above. Let us recall that in
all cases we have assumed that xf,xg > 0.

For Problem 1 the optimal fire-support policy is to always concentrate all
artillery fire (i.e. supporting fires) on just one of the two opposing enemy infantry
units. This policy will maximize the force ratio at the end of the approach to con-
tact in one of the combat areas (i.e. xi/yi) and may be considered to be a 'break-
through" tactic. In other words, one concentrates all fire support on the key enemy

unit in order to overwhelm it and effect a penetration.

On the other hand, for Problems 2, 3, and 4 the optimal fire-support policy

may involve splitting of fires hetween the two enemy troop concentrations. This prop-

erty of the colution has been anticipated in Taylor's earlier work on the optimal

control of "linear-law" Lanchester-type attrition processes [25], [26] (see also [34]).

We may consider this policy to be an "attrition" tactic which aims to wear down the

overall enemy strength. The structurces of the optimal policies for Problems 2, 3,

and 4 are similar, although the switching times (i.e. ‘r¢ and TS) may be appreciably

different when enemy forces are not valued in direct proportion to the rate at which
they destroy value of the friendly forces. In such a case we mev assume without loss
of generality that
>
wll(alvl) w2/(a2v2). (8)
The functional dependences of these switching times are also different in Problems

2, 3, and 4. For Problem 2 the switching times (1.e. the ¢-transition surface) are

23
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independent of the force levels of the attacking friendly forces (i.e. %

as is the optimal policy itself. For Problem 3 the switching times depend (see Table

and xz),

II1) on the rat.o of military worths of surviving infantry forces (computed using

. 2 2
linear utilities), ‘.e. J3 = {zk=l vkxk(T)}/{zk=1 wkyk(T)}. It has been shown (see
Section 3.3 above) that BtslaJ

> 0 so that the larger that J., becomes, the more

3 3
time that is spent concentrating fire on Yl’ although there is an upper limit to this
time (see (7)). Similar results hold for Problem 4, only with J3 replaced by (—Ja).
For comparing the switching times between Problems 3 and 4, we note that J3 > (_JA)

if and only if 3, > {Ziq v Zi=1 W}

The most significant thing to be noted in comparing the optimal fire-support
policies for these four problems is that the entire structure of the optimal policy
may be changed merely by changing the criterion functional. In particular, singular
subarcs (i.e. the splitting of W's fire between Yl and Y2) do not appear in the
solution to Problem 1, even though the necessary conditions for optimality on singular
subarcs are exactly the same in all four of these problems. Such singular subarcs arc,

of course, part of the solution for Problems 2, 3, and 4.
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4. Development of Optimal Policy for Problem 1.

The optimal policy is developed by application of modern optimal control theory.
For Problem 1 it is convenient to introduce the force ratio in the iEh combat zone

T, = xi/yi. Then Problem 1 may be written as

2
maximize ) a r, (T) with T specified,
Kk
8, =1
by
at

subject to: = -ai4-¢ c.T for 1 =1,2, 9)

i7ii

¢1*-¢2 =1, ¢i 20, and r, 20 for i-=1,2,

i

where we recall (2). We also recall that we have assumed that ri > 0.

4.1. Necessary Conditions of Optimality.

The Hamiltonia [4] is given by (using (2))
b= A (maptbe r) +2,(-a,Hh(1-0)e,T,), (10)

so that the maximum principle yields the extremal control law

1 for S¢(L) >0,
$*(t) = (11)
0 for S¢(:) <0,

where So(tj denotes the ¢-switching function defined by

S¢(t) = c1A1r1-c2A2r2. (12)

Tne adjoint system of equations (again using (2) for convenience) is given by
(assuming that ri(T) > 0)
. * . ~ _ .
Xi = -Qiciki with ki(T) = a; for i = 1,2. 13)
Computing the first two time derivatives of the switching function

§¢(c) = -a +a.c,\ 'and §¢(t) = alclxl(cl¢)— aye,),(c,(1-¢)), (14)

11 %%y
we see that on a singular subarcf we have {4, [15]

rl/al = rz/az, and alclx1 = azczlz, (15)

1’See [26] for a further discussion.
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with singular control given by

cz/(c1+c2). (16)

On such a singular subarc the generalized Legendre-Clebsch condition is satisfied,
42 3y
since % { (3 } = alclll(c1+c2) > 0.

4.2. Synthesis of Extremals.

In synthesizing cxtremals+ by the usual backwards construction procedure (see,
for example, [24] or [26]) it is convenient to introduce the "backwards" time
defined by T = T~t. Rather than explicitly constructing extremals and determining
domains of controllability (see [24), [31], [35]), it is more convenient to show that
the return (i.e. value of the criterion functional) corresponding to certain extremals
dominates that from others. For this purpose it suffices to determine all possible
types of extremal policies as we will now do.

To this end, we write

S¢(‘r=0) =q, 2(er/a -r2/a ) (17)

vhere

R=a (18)

1211/ (893,569 -
Without loss generality we may assume that R 2 1. Then by (14) we have

o
S¢(1=0) = ,3,C) = 0,3,C, 20, (19)

where §¢ denotes the "backwards" time derivative §¢ = dséldr. Considering (14)
we may write
o
= 1q.) -
S¢(1) uzach{R(Xl ) (Az/az)). (20)
It follows that S°(r) >0 and ¢*(1) =1 Y1 >0 when § (r 0) =0 for R>1 (also
when S¢(T=0) >0 for R=1). We ‘also have 50(1) <0 and ¢*(r) =0 Y1 =0 when

S°(1=0) <0 for R=1.

LS
'By an extremal we mean a trajectory on which the necessary conditions of optimality
are satisfied.
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There may be a change in the sign of S¢(1’), however, when SO("O) <0 for b

R>1. In this case ¢*(1) = 0 for 0K 1<% £ and then 23

s0 (t) = uzazcz{er (1) /a1 - exp(cz'l')rz(‘l.’) /az} , (21)

where tl denotes the smallest value of T such that S¢(t=tl) = (0, It is clear that
we must have §°(T=1’1) 2 0. If §¢('t='l’1) > 0, then we have a transition surface,

and from (21) we find that

er(tl)/al_exP(cZTl)rz(tl)/aZ = 0, (22)

where t:1 = T-tl. From (20) we find that

ER (1/c2) fnR. (23)

If §¢(T=TI) = 0, the singular subarc may be entered, and then we have

[

T = (1/c2) 2R (24) g
In this case we have :
£ £
T, = erazlal-!-F(R)az/cz, (25)
where ri = ri(t=T) and F(R) = 1+R(2nR-1). We easily see that F(R) > 0 for

R>1, When R =1, we see that once the singular subarc is entered (in forwards
time), it is never exited by an extremal trajectory.
For the purposes of determining the optimal policy it suffices to consider

the following four extremal policies:

Policy O: $*%(t) = 0 for 0 t=T, (26)
Policy 1: $%(t) = 1 for 0K t&T, (27)
1 for 05t < T-tl,
Policy B-B: o*(t) = (28)
(O] for T--rl‘t‘T,
vhere 0 = T < (1/c2)9.n R, and‘r
¢l (e +c,) for 05t < T-1_,
Policy S: o*(t) = { L 1 (29)
0 for T-t, =t =T,

1

¥
The only extremal policies that are omitted here are those corresponding to extremals
which contain a singular subarc but ri/a b4 rg/a .
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where LI (1/c2)lnR and ri/a] = rglaz. It is recadily seen from (17) that Policy 0
ylelds Rri/a1 2 rg/a2, etc. We also note that corresponding to the bang-bang policy
(28) we have
- 0_
rl(tl) = {(clr1 al)cxp(cltl)i-al}/cl,

(30)

= o_
rz(tl) r,-a,ty 2 0.

4.3. Deterrination of the Optimal Fire-Support Policy.

As we have discussed elsewhere [25])--[27}, [31], {35], the optimality of an
extremal trajectory may be proven via citing the appropriate existence thecrem for an
optimal control; for the problem at hand there are two further subcases: (1) 1f the
extremal Is unique, then it is optimal, or (2) if the extiemal is not unique and only
a finite number exist, then the optimal trajectory is determined by considering the
finite number of corresponding values of the criterion functional.+ The existence of
a measurable optimal control follows by Corollary 2 on p. 262 of [17:. In Sections
4.1 and 4.2 above, we have considered nc.essary conditions of optimality for piecewise
continuous controls (see p. 10 and pp. 20-21 of [22]). It remains to show that the
measurable optimal control may be taken (o be pizcewise continuous. This assertion
may be proven by observing that if we consider the maximum principle for measurable
controlsff (see p. 81 of [22]) in the backwards synthesis of extremils, tnen the optimal

Ht
control may bc taken to be piccewisc constant (and hence piccewise continuous).' ¥

+It has not been possible to cstablish the optumality of a policy by citing one of the
many sets of sufficient conditions that arc available (see {4], [26], [35)). In
particular, although the planning horizon for the problem at hand is of fixed lengthy
one cannot invoke the sufficient conditions bascd on convexaity of Mangasarian [18] or
Funk and Gilbert [6]) because the right-hand sides of the differential equations (9)
are not concave functions of Ty and @i.

s
+‘WC have taken the liberty of changing the sign of the adjoint vector of Pontryagin
et al. [22] (see p. 108 of [4]). When the admissable controls ave measurable and
bounded, the Hamiltonian (10) only attains its maximum almost everywnere in ime.
HHi

This aswertion follows from the concrol variable appearing linearly in the Hanoltoaria
(10), the contiol variable space being compact, and the switchiag function (1.2) bong
continuous for 0 * & T. The maaimum principle (aluo singular contsol considerations)
then yicelds that the optimal control wu-t be plecevive conntant almost everywherey Since

(cont. next page)
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We will now show that the optimal control must be constant.+ This 1is done by
showing that the returns fron both Policy B-? ..l also Policy Sﬁ for a given point in
the initial state space are cominated by the return corresponding to a constant extremal
it control. We denote the value of the criterion functional corresponding to Policy O
as Jo, that corresponding to Policy B-B as JB’ etc. Then we have
o o
T T
1jr_(f2)1 [Rr, 1
J = c.a.c {[—]—- [—-]— exp(c,T) - (=—+<% (exp(c,T) —1)]} , (31)
0 "2272Uay ey lay)e, 27 e, ) 2
0 o
- AR 2|1 1R . -+
Jl = azazcz{[a ]c exp(cl'r)+[: ]c [c-z (exp(clT) 1)+CJ} . (32)
1’71 2772 1
" o
J, = a.a.c [—I-Lexp(c {T-t. 1)+ —z—l—exp(c T.)
: B 27272 \la, e 1 1 a,jc 21
p 1’71 2772
' R 1
- & texm(e 11 ) - 14 e 71 & (e, (11 Dewp(e,7) - 11) 5 (33)
1 2
and

0,
T a
1|R R -
s = “2az°2{[a1]'x' exp(KT) - I:Ez @ expxn)-1
+ -1 Runr+d (R—l)]}, (34)

€152 €3

where a = c2/(c1+c2), a+B =1, and K= c1c2/(c1+c2). It is convenient to

define AJ =J -J etc., and then

1-0 1 0 o
. rl] [exp(cl'r)-l] 1 ]
AJl-O = QZaZCZ{R[[-a: —--—c:-L—-—— --c_f (exp(clT) -l-cll‘)
o
rz] [exp(cz’r)-l] 1 ]
. [[; ] - e 1o } . (35)

+Thxs was first conjectured by Professor Frank Faulkner, to whom the authors express
their thanks.

-'-

T By the principle of optimality (see [4]) it suffices for the purpose of showing
that a singular solution is always nonoptimal to consider a singular extremal which
begins with a singular subarc.

[T,

(cont. from page 19) 8,{t) can change sign at most once. Fence, it may be considered
to be piecewise constant (sce p. 130 of [22]). [The authors wish to thank J. Wingate
of Naval Surface Weapons Center, White Oak for generously pointing out tnis type of

argument.}
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exp(c T)-exp(clll-fll)] 1

T, exp(cz'rl) 1 1
_[[a_.] { < ] -2 (exp(cé'.l) + cz[T-rllexp(c,,rl) -1~ cz'l‘)]} ., (36)
2 2

2
and+
AJI_S 8,8, 2 [ ][ (R exp(c T)-l)-— (R exp(KT)—l)]
R e b JUR
= (R exp('(T)-l--—) —rlexp(c 'r)-1-—]+— R!.nR+—z (R-l)} 37
‘1 R) a9 €2
We now state and prove Lemma 1.
LEMMA 1: Assume that T 2 - 1f AJl_O 2 0, then AJI—B 2 0.
LN

PROOF: (a) We consider for t & T

r‘l’ fexp(clt)-exp(cllt"'l'l])] 1
F(e) = R{[EI] ¢ ) 7 cF (explege) —exp(e [ty ) -errp}

r.y exp{c,T,)-1
—{[-a—z-] [——c;l—] -zlvi- (exp(cz'rl) + czlc-Tl]exp(cz'rl) -1~ czt)} .

Then AJ 20 F(t=tl) 2 0.

1-0
(b) We compute that

M 1 1
F'(t) = R{exp(clt) - exp(cllt-rl])}{[s-l-] -EI (l-exp(—cl-tl) )} +; (exp(cz'rl) -1).
(¢) If ¢ ¥ za

then drlldt(t) £0 for 0<t=t, so that (rl/a )

11 1’ 1
t o Pt
z (rl(cl)/al) 2T, It follows that F'(t) 2 0. If ey % 3y then F'(t) > O.
Thus, we always have F'(t) 2 0 for t 2 -
(d) By (a) and (c), we have F(t) 2 0, whence follows the lemma. Q.E.D.

= 0, ve have AJ 20 with AJ >0

LEMMA 2: For ty 0-B 0-B

for tl > 0.

= .1._1.1

+ [ o
In computing AJ) o we assume that r]_/al = r2/d2.
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PROOF: (a) We consider for t 20

o
Ty (exp(c,t.)-1
1 2t 1 )
F(tl) = —R{[EIJ [—'——-cz ] ——zcl (exp(cltl) -1 -clcl)}

o
r.y rexp(c.t,)-1
+ exP(cz‘l‘l) {[i] [———c-;—]‘——]-zlg (exp(czt:].)--l-c2 1)}.

We observe that F(t1=0) = 0.

exp(c.1.)
' =_L _1_ °_ }+ ,--__2__1_ .
(b) Weacompute that F (t:l) al{cll(clrl al)exp(c1;1)+a1] 2
{ro exp(c,t )-—2 (exp(c,t,) -1)}. Considering (22) and (30), we find that for
2 21 <, 271

tl 2 0 we have
(]

F'(t.)) = exp(c,T ){[r—zl(ex (c. .t )-1)--1'—(ex (c,t.)-1-c,t )}
1) = explcTy 2, Plet <, PLeh 2t

(c) Recalling (30) that Pia, 2t , we have for t. 20
272 1 1

F'(tl) 2 exp(cz'fl){tl(exp(cztl)-l) —-:‘; (exp(cztl) -1- cztl)} 20,

since ior t 2 0 we have g(t) 2 0, where g(t) = t(exp(czt)—l) - (exp(czt)—l-czt)/cz.

The latter result follows from g(t=0) =0 and g'(t) 20V t 2 0.
(d) Thus, F(tl') 20V tl 2 0, whence follows the lemma. Q.E.D.

As an immediate crnsequence of Lemmas 1 and 2 we have Thecrem 1.

THEOREM 1: For T & T, > 0, we have max(Jo,J,) 2 J, with strict

1
inequality holding for T > T

B
1

We next consider Lemma 3.

LEMMA 3: Assume that R21 and T 2 t.. Then we have AJl-S 20

1
with AY ¢ »0 for R> 1.

PROOF: (a) We consider for t 20

T




F(t) = t{(Rexp(clt) —1)/c1- (R®exp Kt —1)/K}+R(R-Bexp(KT)-l-Kt/R)/KZ
- -1 2 _ 2
R(exp(clt) 1 clT/R)/cld-(Rln R)/(clcl)i-(R 1)/c2.
Then we have
F(t=0) = R(R™*-1)/K2+ R I B)/(cc,) + (R-1)/e2 = £(R) 2 0,
with f(R) > 0 for R > 1. The latter result follows from f(R=1) = f'(R=1) = 0 and
') = (1K) /(ee,R) > 0V R > 1.
(b) Computing F'(t) = Rat{RBexp(clt)-exp(Kt)} H Rut{exp(clt) ~exp(Kt)} > 0
for R21 and t > 0, we see from (a) that F(t;R) 2 0 with F(t;R) > 0 for R > 1.
(¢) We now consider G(t) = {Rexp (clc)-l}/cl-{Raexp(Kt)-l}/K. It follows
that G(t=0) = 1/c,+R/c, ~R*/K = g(R) 2 0, since g(R=1) = 0 and g'(R) = (1-R‘6)/cl.
Also G'(t) = RG(RBexp(clt)-exp(Kt)) 2 0. Hence, G(t) = 0.
(d) Recalling that ri/a1 2 T, we have by {c) that AJl_s 2 azazczF(T;R) 20

with F(T;R) > 0 for R > 1. Q.E.D.

From Lemma 3 follows Theorem 2.

THEOREM 2: Assume that R2 1 and T 2 - Then max(Jo,Jl) = JS
with inequality holding for R > 1.

Thus, we see from Theorems 1 and 2 that the optimal control must be constant

and equal to either 0 or 1 for 0= t s T. The results shown in Table II and Figures

2 and 3 then follow from consideration of AJl-O (see equation (35)).

5. Development of Optimal Policy for Problem 2.

2
In this case we consider (1) with the criterion function J2 = X vkxk(T) -
! k=1

2
X wkyk(T). Thus, for this problem the state space (considering time to be an

k=1
additional state variable) if five dimensional.

5.1. Necessary Conditions of Optimality.

The Hamiltonian [2) is given by (using (2))




2
H=- ):1 Py3;¥ - qyée¥) = 0, (1-4)c,y,, (38)
i=

so that the maximum principle yields the extremal control law

1 for S¢(:) >0,
$*(t) = 39
V] for S¢(t) <0,

where S¢(t) denotes the ¢-switching function defined by

S¢(t) = ¢y (=qy)y; - ¢,(-q,)y,- (40)
The adjoint system of equations (again using (2) for convenience) is given by (assuming
that xi(T) > 0)

pi(t) = vy for 0=t=T with i=1,2,

and (41)

*
9y = aivi-l-daiciqi with qi(T) = -wy for 1 =1,2.

Computiag the first two time derivatives of the switching function

R - . ) _ ) ,
S¢(t) ajc,vyy; $3,¢,v,5,, and S¢(t) a,6,v,5,(e,9) —a,e,v,y,(c, (1-0)), (42)
we sce that on a singular subarc we have {4], [15]
y1/y2 = a2c2v2/(alc1v1), and (-ql)/(alvl) = (_qZ)/(aZVZ)’ (43)
with the singular control given by
g = c2/(c1+c2). (44)
On such a singular subarc the generalized legendre-Clebsch condition is satisfied, since

2 {42 ()} _
a¢{§?{[a¢]} = a0 vy legtey) > 0.

For Problem 1 it was convenient to consider a "reduced” state space consisting

of t,r. = xl/yl, and LY while for Problem 2 we are considering the "full" state

1
space of t, xl, xz, yl, and y2. It seems appropriate tc point out the correspond-
ing rclation between the adjcint variables in these two state spozes., This relation

is casily seen by considering the optimal return function (see [4)), denoted as W,

and the following transformation of variables




t=t, and 1, = x /fy, for i=1,2. (45)

W w o
Then we have, for example, pi(t) = % (0 =3 3R S that we obtain
i i 71
P = Ai/yi, and q; = -rili/yi for i=1,2. (46)

Let us also note that, alternatively, Problem 1 could have been solved in the "full"
state space of ¢, Xys Xy ¥y and ¥y3 while Problem 2 cannot be solved in the
"reduced" state space. The latter conclusion follows from comsidering (41i) and the
requirement {sce (46) above] that pi/qi = —1/ri must hold for the transformation

(45) to be applicable.

5,2. Synthesis of Extremals.

In syntheeizing extremals by the usual backwards construcilon precedure it is

convenient to consider

f
w a v,y v W
S (1=0) = a,c,v yf . { 11171 —f 2 / L }, “n
¢ 2727272 avil, oy [azv2 v
2%272%2
and
°
S°(T) = 2)6,V1Y) Z2,0,V0Y, (48)
where 7T denotes the "backwards" time defined by 1 = T-t, and 50 denoces the
"backwards" time derivative §¢ = dséldr. We omit most of the tedious details of tle

synthesis of extremals because of similarity to those in [26]. Without loss of gercr-
ality we may assume that (8) holds, and then there are two cases to be considered:

(1) wll(alvl) = w2/(azv2), and (1I) wl/(alvl) > wZ/(azv2 .

CAST 1: wlliﬂlgl) = wzljgzxz); i.e, w, =kav, for i=1,2.

In this case (46) becomes
S (1=0) = a,c,v yf(w /(a,v,)){o,c,v yf/(a c.v Lf) -1}
¢ 272727271 11 1717171227272 ’
whence follows the synthesis of extremals shown in Figure 4.
CASE TT:_ w,/€a\v)) = wo/(a,v,).

In this case it follows from (39), (47), and (48) that for pf = yi/y; -

34
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aZCZVZ/(alclvl) we have SO(T) >0 and #*(‘t)aﬂclv for"all t"> 0. Since S°(T=0)
0= §0(1=0) < 0, it follows that for pf = [;2—2‘%] ['——2—]/[a i ] we have S¢(T) <0
16171/ 18Y0) 41y
ard ¢*(t) = 0 for all T > Q.
The'e may be a change in the sign of s¢(t), however, for czwzl(clwl) < of
< a2c2v2/(a1c1v1). In this case ¢*(1) =1 for 00X T X Yy and then ;

a.c.v a,¢.V.\ (W w
S¢(T) = azczvzyg{cilex‘)(cl‘r)—n[alclvllpf-‘H' [alclvl) [a 3; ]pf - [a ‘21 ]} - 9
1 27272 27272211 272

It is clear that we must have S¢(1=11) £0. If s¢(T=T1) < 0, then we have a transi-
tion surface w'th tl (denoted as T¢) given by the smaller of the two positive roots
of G(t=1¢;pf) = 0, where G(t;pf) is given in Table III. If §¢(1=11) =0, a
singular subarc may be entered, and then we have that Tl {denoted as TS) is given
by the unique nonnegative root of F(T=Ts) = 0, where F(t) is given in Table III.
We denote the corresponding value of pf as pg. Then there is no switch in ¢% for

pf > pg. We state this result as Theorem 3.

THEOREM 3: ¢*(1) =1 for all 12 0 when Of > pg.

PROOF: Immediate by C(T=TS;Of=D§) = F(Tsts) =0 and ac/apf > 0, since then

there is no solution to G(r=11;pf) e 0 for pf > pg. .E.D.

The bounds on g shown in Table IIl are developed as follows, First assume
that wl/(alvl) < 1/c1 and consider F(z) = 11-(llcl-wll(alvl)}exp(-:lf)- {llcl w2/(a2v2)).
t "
Then clwll(alvl) EF' (1) £1 and F"(7) 2 0 for wll(alvl) < llcl, whence follow
the bounds shown in Table III. Other developments are similar.

The above information immediately leads to the extremal field showr in Figure 5

(see also Tables II and YII). .

5.3. Determination of the Optimal Firc-Support Policy.

The optimality of the extremal fire-support policy developed above tollcws according

to the reasoning given in Section 4.3 by the uniqueness of extremals.
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6. Development of Optimal Policy for Problem 3.

2
In this case we consider (1) with the criterion functional J3 = { X vkxk(T)}
2 k=1

/{kzl ™Y

6.1. Necessary Conditions of Optimality.

The necessary conditions of optimality for Problem 3 are the same as those for
Problem 2 except that the boundary conditions for the adjoint variables are different.
Thus, (38) through (40) also apply to Problem 3. The adjoint system of equations (again

using (2) for convenience) is given by (assuming that xi(T) > 0)

pi(t) = vi/D for 0X£t&T with i=1,2,
and (50)
. *
q; = aipi+-¢iciqi with qi(T) =-wiJ3/D for i=1,2,

2

where D = X w,y
k1 Kk

Computing the first two time derivatives of the switching function

(T).

S¢(t) = -alclplyli-azczpzyz, and S¢(t) = alclprl(cl¢) —azczpzyz(cz(l-é)\, (51)
we find that (43) and (44) again hold on a gingular subarc. On such a singular subarc

2
the generalized Legendre-Clebsch condition is satisfied, since g%{é%z{g%]} =
alclvlyl(c1+c2)/D > 0.

6.2. Synthesis of Extremals.

The synthesis of extiemals is essentially the same as for Problem 2 (see Section

5.2 above) except that we have

f
o £ "1 { 4510 Y21,( 1
S¢(T-0) - J362c2v2y2(a v ] [ £] " la,v / a,v }/D’ (52)
1717 “la,c v,y 272 1’1
2727272
and
o P
SQ(T) = (alslvlyl-nzczvzyz)lb. (53)

1t 1ollows that

f
W ajc v,y Y (v
fl_"1 1717171 2 1
5360 = eyt ook [0 ) 2]
¢ 372727272 vy azczvzyg a,v lalv1

T
+ l [alclvlyl(o) - a9¢9vyy2(0) Jdo}/D. (54)
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6.3. Determination of the Optimal Fire-Support Policy.

As for Problem 2, the optimality of the extremal fire-support policy devcloped
above follows according to the reasoning given in Section 4.3 by the uniqueness of

extremals.

7. Development of Optimal Policy for Problem 4.

2
In this case we consider (1) with the criterion functional J, = - T vhIxk-xk(D)] /
2 k=1
Z wk[yz-yk(T)] . The necessary conditions of optimality for Problem 4 are the same
k=1
as those for Problems 2 and 3, except that the boundary conditions for the adjoint

variables are different: at t = T we have

pi(T) = vi/D1 and qi(T) = 'wi('J4)/D1 for i=1,2, (55)

[

2
where Dl = z wk[yz-yk(T)]. Consequently, the solution to Problem 4 is exactly the
k=1

same as that to Problem 3, except that J, in the solution to Problem 3 is replaced

3
by ('JA)' Because of the dependence of JA on the initial force levels xz,yg for
i = 1,2, the two~point boundary-value problem which arises in the determination of

switching times when (8) holds is very difficult to solve.

8. Discussion.

Tn this section we discuss what we he learned about the dependence of the
structure of optimal time-sequential fire-support policies on the quantificat ion of
military objectives. We studied this dependence by considering four specific problews
(each corresponding to a different quantification of objectives, i.e. criterion func-
tional) for which solutions were developed by modern optimal control theory.

Our most significant finding is that essentially the entire structure of the
optamal time-sequential fire-support policy may be changed by modifying the quantifi-
cation of military objectives. We feel that there are basically two types of military
strategivs: (1) obtain a "local” advantage, and () obtaln an "overall™ advantopr.

The criterion functional for Problem 1 (i.e. J. =

1 ax (/3 Ty a weaghtung

Lt

k=1

37




of the final force ratios in the two separate combat areas) reflects the striving to

:.tain a "local" advantage (referred to above as a "breakthrough" tactic). The corre-

spording optimal fire-support policy was to concentrate all supporting fires on one

of the enemy units (the quantitative determination of this policy is given ir Table II)

for the entire period of fire support.*

On the other hand, the criterion functionals for Problems 2, 3, and Qf* reflect

the striving to attain an "overall” advantage (referred to above as an "attrition" tactic

which aims to wear down the overall enemy strength). The corresponding optimal time-
gsequential fire-support policies for Problems 2, 3, and 4 were qualitatively the same

and could involve a splitting of supporting fires between the two enemy troop concen-

trations. This property of the optimal fire-distribution policy is not present in the
solution to Problem 1 and was anticipated by our earlier work on optimal fire distri-
butjon against enemy target types which undergo attrition according to a "linear-law"
process (see Section 3.1 above) [25], [26]. The criterion functional for this earlier
vork was the difference between the overall militavy worths of friendly and enemy sur-
vivors. Thus, we see that nonconcentration of fires on particuler target types is
characteristic of optimal time-sequential fire distribution over enemy target types

which undergo attrition according vo a "linear-law" process with the objective of

attaining an "overall” advantage.

fWe have assumed that the X commander has perfect information about the state

variables (e.g. enemy force levels) and all Lanchester attrition-rate coefficients
(i.e. system parameters). In the real world where this assumnbtion may not hold, this
policy need not be optimal., Other factors that would temper the use of such a policy
in the real world are (1) the need to "pin down" enemy forces with supporting fires
(i.e. suppressive effects), and (2) the giving of information to the enemy as to
exactly where his defenses will be attacked by the concentration of preparatory fires
only there.

+t, 2 v w2
We recall that J2 = 2k=1 vkxk(T)- Zk=1 wkyk(T), the difference between overall

military worths (computed assuming linear utilities) of friendly and enemy forces at
the time when supporting fires must be lifted; J3= (Zi~1 vkxk(T)}/{Zi=1 wkyk(T))ﬂ

N . g2 o o_ 2 0 N
the ratio of overall military worths; and J, = (Xk=1 Vi X xk(T)}/():knl v [y = (D1,

the vatio of the military worths of friendly and enemy losses.

3R




We saw that the structures of the optimal time-sequential fire-support policies

for Problems 2, 3, and 4 were qualitatively similar. In fact, when one (i.e. the X

commander) values enemy (i.e. Y) forces in each of the two combat zones in direct pro-
portion to their rate (per unit of individual weapon system) of destroying the value

of opposing friendly forces, the optimal policies were exactly the same for all three
problems (see Table II). Imn this case the optimal fire-support policy took the par-
ticularly simple form of Policy A as given by (6).

When enemy survivors were not valued in direct proportion to their rate of

destruction of friendly value, the optimal policies were different and more complex

(see Tables II and III; .i1so Figure 5), and the planning horizon may be considered to
be divided into two phases, denoted as PHASE I and PHASE II. The lengths of these two
phases depended on different factors in these three prubiems, and the timing of changes
in the allocation of supporting fires could be appreciably different., When the
planning objective was the maximization of the difference in the to .. military worths
of friendly and enemy forces at the end of the "approach to contacc," the length of,
For example, PHASE II (during which all fire is concentrated on Yl) depended only on
the attrition-rate coefficients and enemy force levels and was independent of the

friendly attacking-force levels. When the ratio of the total wcrths of surviving friendly

and_enemy forces was considered (i.e. for Problem 3), the length of PHASE II also depended

directly on the attacking friendly force levels; while when the ratio of the total worths

of friendly and enemy losses was considered, it also depended on the initial total

woriths of forces.
Thus, we see that (at least for the relatively simple fire-support allocation
problem considered here) the structure of the optimal time-sequential allocation policy

v,

may 1 strongly influenced by the quantification of military objectivis. Moreover, the

most important planning decision apparently is whether a side will sock to attain an

3¢




"overall" advantage or a "local" advantage. We hope that our investigation has prcvided

a better understanding of the dependence of the structure of optimal time-sequential
fire-support strategies on combatant objectives. In conclusion, it appears to us

that more such specific cases warrant investigation for developing a theory of optimal

combat strategies.
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